Chapter 7
Development Strategies
Chapter Objectives

• Describe the concept of Software as a Service
• Define Web 2.0 and cloud computing
• Explain software acquisition alternatives, including traditional and Web-based software development strategies
• Describe software outsourcing options, including offshore outsourcing and the role of service providers
Chapter Objectives

• Explain advantages and disadvantages of in-house software development
• Explain cost-benefit analysis and financial analysis tools
• Explain the differences between a request for proposal (RFP) and a request for quotation (RFQ)
• Describe the system requirements document
Chapter Objectives

• Explain the transition from systems analysis to systems design, and the importance of prototyping
• Discuss guidelines for systems design
• Describe software development trends
Introduction

• Chapter 7 describes the remaining activities in the systems analysis phase
• The chapter also describes the transition to systems design, prototyping, and systems design guidelines
• The chapter concludes with a discussion of trends in software development
The Impact of the Internet

• Software as a Service
 – Software as a Service (SaaS)
 – 25% of all new business software will be deployed as a service by 2011, while the value of the SaaS industry will grow to $40 billion
The Impact of the Internet

• Traditional vs. Web-Based Systems Development
 – Traditional development
 • System design is influenced by compatibility issues
 • Systems are designed to run on local and wide-area company networks
 • Systems often utilize Internet links and resources, but Web-based features are treated as enhancements rather than core elements of the design
The Impact of the Internet

• Traditional vs. Web-Based Systems Development
 – Web-based development
 • Systems are developed and delivered in an Internet-based framework such as .NET or WebSphere
 • Internet-based development treats the Web as the platform, rather than just a communication channel
 • Web-based software usually requires additional layers, called middleware
The Impact of the Internet

• Looking to the Future: Web 2.0 and Cloud Computing
 – The Web 2.0 platform will enhance interactive experiences including wikis and blogs, and social networking applications
 – Cloud computing could bring enormous computing power to business and personal Internet users
Outsourcing

• The Growth of Outsourcing
 – A firm that offers outsourcing solutions is called a service provider
 – Application service providers (ASP)
 – Internet business services (IBS)
 • Also called managed hosting
Outsourcing

• Outsourcing Fees
 – A fixed fee model uses a set fee based on a specified level of service and user support
 – A subscription model has a variable fee based on the number of users or workstations that have access to the application
 – A usage model or transaction model charges a variable fee based on the volume of transactions or operations performed by the application
Outsourcing

• Outsourcing Issues and Concerns
 – Mission-critical IT systems should be outsourced only if the result is a cost-attractive, reliable, business solution that fits the company’s long-term business strategy
 – Outsourcing also can affect day-to-day company operations and can raise some concerns
Outsourcing

• Offshore Outsourcing
 – Offshore outsourcing – global outsourcing
 – Many firms are sending IT work overseas at an increasing rate
 – The main reason for offshore outsourcing is the same as domestic outsourcing: lower bottom-line costs
 – Offshore outsourcing, however, involves some unique risks and concerns
In-House Software Development Options

- Make or Buy Decision

<table>
<thead>
<tr>
<th>REASONS FOR IN-HOUSE DEVELOPMENT</th>
<th>REASONS FOR PURCHASING A SOFTWARE PACKAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfy unique business requirements</td>
<td>Lower costs</td>
</tr>
<tr>
<td>Minimize changes in business procedures and policies</td>
<td>Requires less time to implement</td>
</tr>
<tr>
<td>Meet constraints of existing systems</td>
<td>Proven reliability and performance benchmarks</td>
</tr>
<tr>
<td>Meet constraints of existing technology</td>
<td>Requires less technical development staff</td>
</tr>
<tr>
<td>Develop internal resources and capabilities</td>
<td>Future upgrades provided by the vendor</td>
</tr>
<tr>
<td>Satisfy unique security requirements</td>
<td>Obtain input from other companies</td>
</tr>
</tbody>
</table>
In-House Software Development Options

• Developing Software In-House
 – Satisfy unique business requirements
 – Minimize changes in business procedures and policies
 – Meet constraints of existing systems
 – Meet constraints of existing technology
 – Develop internal resources and capabilities
In-House Software Development Options

• Purchasing a Software Package
 – Lower costs
 – Requires less time to implement
 – Proven reliability and performance benchmarks
 – Requires less technical development staff
 – Future upgrades provided by the vendor
 – Input from other companies
In-House Software Development Options

• Customizing a Software Package
 1. You can purchase a basic package that vendors will customize to suit your needs
 2. You can negotiate directly with the software vendor to make enhancements to meet your needs by paying for the changes
 3. You can purchase the package and make your own modifications, if this is permissible under the terms of the software license
In-House Software Development Options

• Creating User Applications
 – User application
 – User interface
 – Help desk or information center (IC)
 – Screen generators
 – Report generators
 – Read-only properties
Role of the Systems Analyst

• When selecting hardware and software, systems analysts often work as an evaluation and selection team.

• The primary objective of the evaluation and selection team is to eliminate system alternatives that will not meet requirements, rank the system alternatives that are feasible, and present the viable alternatives to management for a final decision.
Analyzing Cost and Benefits

• Financial Analysis Tools
 – Payback Analysis
 – Return on investment (ROI)
 – Net present value (NPV)
Analyzing Cost and Benefits

• Cost-Benefit Analysis Checklist
 – List each development strategy being considered
 – Identify all costs and benefits for each alternative. Be sure to indicate when costs will be incurred and benefits realized
 – Consider future growth and the need for scalability
 – Include support costs for hardware and software
Analyzing Cost and Benefits

• Cost-Benefit Analysis Checklist
 – Analyze various software licensing options, including fixed fees and formulas based on the number of users or transactions
 – Apply the financial analysis tools to each alternative
 – Study the results and prepare a report to management
The Software Acquisition Process

• Step 1: Evaluate the Information System Requirements
 – Identify key features
 – Consider network and web-related issues
 – Estimate volume and future growth
 – Specify hardware, software, or personnel constraints
 – Prepare a request for proposal or quotation
The Software Acquisition Process

• Step 2: Identify Potential Vendors or Outsourcing Options
 – The Internet is a primary marketplace
 – Another approach is to work with a consulting firm
 – Another valuable resource is the Internet bulletin board system that contains thousands of forums, called newsgroups
The Software Acquisition Process

• Step 3: Evaluate the Alternatives
 – Existing users
 – Application testing
 – Benchmarking - benchmark
 – Match each package against the RFP features and rank the choices
The Software Acquisition Process

• Step 4: Perform Cost-Benefit Analysis
 – Identify and calculate TCO for each option you are considering
 – When you purchase software, what you are buying is a software license
 – If you purchase a software package, consider a supplemental maintenance agreement
The Software Acquisition Process

• Step 5: Prepare a Recommendation
 – You should prepare a recommendation that evaluates and describes the alternatives, together with the costs, benefits, advantages, and disadvantages of each option
 – At this point, you may be required to submit a formal system requirements document and deliver a presentation
The Software Acquisition Process

• Step 6: Implement the Solution
 – Implementation tasks will depend on the solution selected
 – Before the new software becomes operational, you must complete all implementation steps, including loading, configuring, and testing the software; training users; and converting data files to the new system’s format
Completion of Systems Analysis Tasks

• System Requirements Document
 – The system requirements document, or software requirements specification, contains the requirements for the new system, describes the alternatives that were considered, and makes a specific recommendation to management
 – Like a contract
 – Format and organize it so it is easy to read and use
Completion of Systems Analysis Tasks

• Presentation to Management
 – Summarize the primary viable alternatives
 – Explain why the evaluation and selection team chose the recommended alternative
 – Allow time for discussion and for questions and answers
 – Obtain a final decision from management or agree on a timetable for the next step in the process
Completion of Systems Analysis Tasks

• Presentation to Management
 – Depending on their decision, your next task as a systems analyst will be one of the following
 1. Implement an outsourcing alternative
 2. Develop an in-house system
 3. Purchase or customize a software package
 4. Perform additional systems analysis work
 5. Stop all further work
The Transition to Systems Design

• Preparing for Systems Design Tasks
 – It is essential to have an accurate and understandable system requirements document

• The Relationship between Logical and Physical Design
 – The logical design defines the functions and features of the system and the relationships among its components
 – The physical design of an information system is a plan for the actual implementation of the system
Systems Design Guidelines

• The systems analyst must understand the logical design of the system before beginning the physical design of any one component

• Systems Design Objectives
 – The goal of systems design is to build a system that is effective, reliable, and maintainable
Systems Design Guidelines

• Systems Design Objectives
 – User Considerations
 • Carefully consider any point where users receive output from, or provide input to, the system
 • Anticipate future needs of the users, the system, and the organization – hard-coded
 • Provide flexibility
 • Parameter, default
Systems Design Guidelines

• Systems Design Objectives
 – Data Considerations
 • Data should be entered into the system where and when it occurs because delays cause data errors
 • Data should be verified when it is entered, to catch errors immediately
 • Automated methods of data entry should be used whenever possible
 • Access for data entry should be controlled and all entries or changes to critical data values should be reported – audit trail
Systems Design Guidelines

• Systems Design Objectives
 – Data Considerations
 • Every instance of entry and change to data should be logged
 • Data should be entered into a system only once
 • Data duplication should be avoided
Systems Design Guidelines

• Systems Design Objectives
 – Architecture considerations
 • Use a modular design
 • Design modules that perform a single function are easier to understand, implement, and maintain
Systems Design Guidelines

• Design Trade-Offs
 – Design goals often conflict with each other
 – Most design trade-off decisions that you will face come down to the basic conflict of quality versus cost
 – Avoid decisions that achieve short-term savings but might mean higher costs later
Prototyping

- Prototyping Methods
 - System prototyping
 - Design prototyping
 - Throwaway prototyping
 - Prototyping offers many benefits
 - Consider potential problems
Prototyping

• Prototyping Tools
 – CASE tools
 – Application generators
 – Report generators
 – Screen generators
 – Fourth-generation language (4GL)
 – Fourth-generation environment
Prototyping

• Limitations of Prototypes
 – A prototype is a functioning system, but it is less efficient than a fully developed system
 – Systems developers can upgrade the prototype into the final information system by adding the necessary capability
 – Otherwise, the prototype is discarded
Software Development Trends

• A review of current online topics being discussed in the IT community
 – Software quality will be more important than ever
 – Project management will be a major focus of IT managers
Software Development Trends

• Many software development tools and technologies are in transition
 – Service-oriented architecture (SOA)
 • Loose coupling
 – Growth in open-source software
 – Web services
 – Programmers will continue to use dynamic languages
Chapter Summary

• This chapter describes system development strategies, the preparation and presentation of the system requirements document, and the transition to the systems design phase of the SDLC
• An important trend that views software as a service, rather than a product, has created new software acquisition options
• Systems analysts must consider Web-based development environments
Chapter Summary

• The systems analyst’s role in the software development process depends on the specific development strategy
• The most important factor in choosing a development strategy is total cost of ownership (TCO)
• The process of acquiring software involves a series of steps
• A prototype is a working model of the proposed system
Chapter Summary

• Chapter 7 complete